设计简介
斯太尔重型货车驱动桥设计及建模说明书
摘要
驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。
本设计具有以下的优点:由于的是采用中央单级减速驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。并且,弧齿锥齿轮的单级主减速器提高了后桥的传动效率,提高了传动的可行性。
关键字:驱动桥;主减速器;差速器;半轴;桥壳;轮边减速器
Abstract
along with the automobile to the security, the energy conservation, the environmental protection unceasing takes seriously, the automobile rear axle of car takes a complete bikes's key component, its product's quality to complete bikes's safety handling and the complete bikes performance's influence is very big, thus carries on the effective optimization design computation to the automobile rear axle of car is very essential.
the driving axle takes automobile one of four big units, its performance quality immediate influence complete bikes performance, but appears regarding the truck especially important. When uses the uprated engine to output the big torque satisfies the present truck fast, the heavy load high efficiency, the high benefit need, must match one highly effective, the reliable driving axle. The driving axle generally by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on is composed. Will therefore use the transmission efficiency high single stage deceleration driving axle to become in the future the heavy load automobile's development direction.
this article referred to the traditional driving axle's design method to carry on the truck driving axle's design. This article first determines major component's structure pattern and the main design variable; Then the reference similar driving axle's structure, determines the overall project design; Finally to the host, the driven bevel gear, the differential device circular cone planet gear, the rear axle shaft gear, the full floating axle and the integral-type bridge shell's intensity carried on the examination as well as has carried on the life examination to the supporting bearing.
this design has the following merit: What because uses the central single stage deceleration driving axle, causes the entire rear axle of car the structure to be simple, the fabrication technology is simple, thus big reduced the production cost. And, the arc cusp gear's single stage main gear box raised the rear axle of car transmission efficiency, enhanced the transmission feasibility. key words: Driving axle main gear box differential device rear axle bridge shell
keywords: driving axle; main reducer; differential mechanism; half shaft; bridge shell; wheel-side reducer
目录
1 概述 1
2 驱动桥结构方案分析 2
2.1 非断开式驱动桥 2
2.2 断开式驱动桥 2
3 主减速器设计 4
3.1.主减速器结构型式 4
3.1.1主减速器齿轮的类型 4
3.1.2主减速器的减速形式 5
3.1.3主减速器主、从动锥齿轮的支承方案 5
3.1.4锥齿轮啮合调整 6
3.2主减速器的基本参数选择与计算载荷的确定 7
3.2.1主减速器齿轮计算载荷的确定 7
3.2.2锥齿轮主要参数的选择 9
3.3 主减速器锥齿轮的几何尺寸计算与强度计算 11
3.3.1 主减速器锥齿轮的几何尺寸计算 11
3.3.2 主减速器锥齿轮强度计算 13
3.4主减速器锥齿轮轴承的载荷计算 16
3.5 主减速器齿轮的材料及热处理 20
3.6 主减速器的润滑 21
4 差速器设计 21
4.1 差速器结构形式选择 21
4.2普通锥齿轮差速器齿轮设计 22
4.2.1差速器齿轮主要参数选择 22
4.2.2 差速器齿轮的几何尺寸与强度计算 25
5 半轴设计 28
5.1 结构形式分析 28
5.2. 全浮式半轴的结构设计及强度计算 29
5.3半轴的材料与热处理 30
6 驱动桥壳的设计 32
6.1 驱动桥壳结构方案选择 32
6.2 驱动桥壳强度计算 33
6.2.1汽车以最大牵引力行驶时的桥壳强度计算 33
6.2.2 汽车受最大侧向力时的桥壳强度计算 35
6.2.3汽车通过不平路面时桥壳强度计算 35
7轮边减速器的设计 37
7.1轮边减速器的传动方案 37
7.2齿轮的设计 38
7.2.1齿轮传动比的设计 38
7.2.2齿轮材料的选择 38
7.2.3齿轮模数的设计 39
7.2.4齿轮几何参数的确定及校验 40
7.2.5齿轮传动效率 42
7.2.6齿轮强度校核验算 42
7.3行星轴的设计 49
7.4花键的选用及校核 50
8 基于CATIA的驱动桥实体建模与装配 52
8.1重型货车驱动桥的建模与装配 52
8.1.1单级主减速器的建模与装配 52
8.1.2差速器的建模与装配 58
8.1.3轮边减速器的建模与装配 59
8.1.4驱动桥壳的建模 59
8.1.5驱动桥的总装配图 60
结 论 62
参考文献 63
致谢 64
摘要
驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。驱动桥一般由主减速器、差速器、车轮传动装置和驱动桥壳等组成。所以采用传动效率高的单级减速驱动桥已成为未来重载汽车的发展方向。
本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。
本设计具有以下的优点:由于的是采用中央单级减速驱动桥,使得整个后桥的结构简单,制造工艺简单,从而大大的降低了制造成本。并且,弧齿锥齿轮的单级主减速器提高了后桥的传动效率,提高了传动的可行性。
关键字:驱动桥;主减速器;差速器;半轴;桥壳;轮边减速器
Abstract
along with the automobile to the security, the energy conservation, the environmental protection unceasing takes seriously, the automobile rear axle of car takes a complete bikes's key component, its product's quality to complete bikes's safety handling and the complete bikes performance's influence is very big, thus carries on the effective optimization design computation to the automobile rear axle of car is very essential.
the driving axle takes automobile one of four big units, its performance quality immediate influence complete bikes performance, but appears regarding the truck especially important. When uses the uprated engine to output the big torque satisfies the present truck fast, the heavy load high efficiency, the high benefit need, must match one highly effective, the reliable driving axle. The driving axle generally by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on is composed. Will therefore use the transmission efficiency high single stage deceleration driving axle to become in the future the heavy load automobile's development direction.
this article referred to the traditional driving axle's design method to carry on the truck driving axle's design. This article first determines major component's structure pattern and the main design variable; Then the reference similar driving axle's structure, determines the overall project design; Finally to the host, the driven bevel gear, the differential device circular cone planet gear, the rear axle shaft gear, the full floating axle and the integral-type bridge shell's intensity carried on the examination as well as has carried on the life examination to the supporting bearing.
this design has the following merit: What because uses the central single stage deceleration driving axle, causes the entire rear axle of car the structure to be simple, the fabrication technology is simple, thus big reduced the production cost. And, the arc cusp gear's single stage main gear box raised the rear axle of car transmission efficiency, enhanced the transmission feasibility. key words: Driving axle main gear box differential device rear axle bridge shell
keywords: driving axle; main reducer; differential mechanism; half shaft; bridge shell; wheel-side reducer
目录
1 概述 1
2 驱动桥结构方案分析 2
2.1 非断开式驱动桥 2
2.2 断开式驱动桥 2
3 主减速器设计 4
3.1.主减速器结构型式 4
3.1.1主减速器齿轮的类型 4
3.1.2主减速器的减速形式 5
3.1.3主减速器主、从动锥齿轮的支承方案 5
3.1.4锥齿轮啮合调整 6
3.2主减速器的基本参数选择与计算载荷的确定 7
3.2.1主减速器齿轮计算载荷的确定 7
3.2.2锥齿轮主要参数的选择 9
3.3 主减速器锥齿轮的几何尺寸计算与强度计算 11
3.3.1 主减速器锥齿轮的几何尺寸计算 11
3.3.2 主减速器锥齿轮强度计算 13
3.4主减速器锥齿轮轴承的载荷计算 16
3.5 主减速器齿轮的材料及热处理 20
3.6 主减速器的润滑 21
4 差速器设计 21
4.1 差速器结构形式选择 21
4.2普通锥齿轮差速器齿轮设计 22
4.2.1差速器齿轮主要参数选择 22
4.2.2 差速器齿轮的几何尺寸与强度计算 25
5 半轴设计 28
5.1 结构形式分析 28
5.2. 全浮式半轴的结构设计及强度计算 29
5.3半轴的材料与热处理 30
6 驱动桥壳的设计 32
6.1 驱动桥壳结构方案选择 32
6.2 驱动桥壳强度计算 33
6.2.1汽车以最大牵引力行驶时的桥壳强度计算 33
6.2.2 汽车受最大侧向力时的桥壳强度计算 35
6.2.3汽车通过不平路面时桥壳强度计算 35
7轮边减速器的设计 37
7.1轮边减速器的传动方案 37
7.2齿轮的设计 38
7.2.1齿轮传动比的设计 38
7.2.2齿轮材料的选择 38
7.2.3齿轮模数的设计 39
7.2.4齿轮几何参数的确定及校验 40
7.2.5齿轮传动效率 42
7.2.6齿轮强度校核验算 42
7.3行星轴的设计 49
7.4花键的选用及校核 50
8 基于CATIA的驱动桥实体建模与装配 52
8.1重型货车驱动桥的建模与装配 52
8.1.1单级主减速器的建模与装配 52
8.1.2差速器的建模与装配 58
8.1.3轮边减速器的建模与装配 59
8.1.4驱动桥壳的建模 59
8.1.5驱动桥的总装配图 60
结 论 62
参考文献 63
致谢 64