您好,欢迎来到机械CAD网!
客服QQ:20425042

首页 > 机械机电 >

设计名称
重型货车驱动桥设计【整体式驱动桥】【汽车车辆工程】【说明书+CAD】
设计编号
JX5428
设计软件
AutoCAD,Word
包含内容
见右侧图片
说明字数
见下方截图
图纸数量
见右侧图片
推荐指数
较高
价格
价格优惠中
整理日期
2017-08-01
整理人
admin
设计简介
摘  要
本次设计的题目是重型车辆车桥设计。驱动桥一般由主减速器、差速器、半轴及桥壳四部分组成,其基本功用是增大由传动轴或直接由变速器传来的转矩,将转矩分配给左、右车轮,并使左、右驱动车轮具有汽车行驶运动学所要求的差速功能;此外,还要承受作用于路面和车架或车厢之间的铅垂力、纵向力和横向力。
本设计首先论述了驱动桥的组成,再分析驱动桥各部分结构型式,确定总体设计方案:采用整体式驱动桥,主减速器的减速型式采用单级减速器,主减速器齿轮采用螺旋锥齿轮,差速器采用普通对称式圆锥行星齿轮差速器,半轴采用全浮式型式,桥壳采用钢板冲压焊接式整体式桥壳。在本次设计中,主要完成了单级减速器、圆锥行星齿轮差速器、全浮式半轴的设计和桥壳的校核及CAD绘图等工作。
关键词:驱动桥;主减速器;差速器;半轴;桥壳;CAD;设计;校核
ABSTRACT
The object of the design is The Design for Driving Axle of truck of Cellon Ⅱ CA1080.  Driving Axle is consisted of Final Drive, Differential Mechanism, Half Shaft and Axle Housing. The basic function of Driving Axle is to increase the torque transmitted by Drive Shaft or directly transmitted by Gearbox, then distributes it to left and right wheel, and make these two wheels have the differential function which is required in Automobile Driving Kinematics; besides, the Driving Axle must also stand the lead hangs down strength, the longitudinal force and the transverse force acted on the road surface, the frame or the compartment lead. 
The configuration of the Driving Axle is introduced in the theses at first. On the basis of the analysis of the structure ,the developing process and advantages and disadvantages of the former type of Driving Axle, the design adopted the Integral Driving Axle, Single Reduction Gear for Main Decelerator’s deceleration form, Spiral Bevel Gear for Main Decelerator’s gear, Full-floating for Axle and stamp-welded steel sheet of Integral Axle Housing for Axle Housing. In the design, we accomplished the design for Single Reduction Gear, tapered Planetary Gear Differential Mechanism, Full-floating Axle, the checking of Axle Housing and CAD drawing and so on.
Key words: Drive axle;Main reducer;Differential;Axle;Bridge shell;CAD;Design;Check目  录
摘要 I
Abstract II
1 绪论 1
1.1 研究背景 1
1.2 驱动桥研究的目的和意义 1
1.3 驱动桥研究状况与发展趋势 2
1.3.1 发展状况 2
1.3.2 驱动桥发展趋势 2
1.4 主要研究内容 4
2 驱动桥结构方案拟定 5
2.1 驱动桥的结构和种类 5
2.1.1 汽车车桥的种类 5
2.1.2 驱动桥的种类 5
2.1.3 驱动桥结构组成 5
2.2 设计要求 10
2.2.1 适用车型 10
2.2.2 设计基础数据 10
2.3 本章小结 10
3 主减速器设计 11
3.1 主减速器的结构形式 11
3.1.1 主减速器的齿轮类型 12
3.1.2 主减速器主、从动锥齿轮的支承形式 12
3.2 主减速器的基本参数选择与设计计算 13
3.2.1 主减速比i0的确定 13
3.2.2 主减速器计算载荷的确定 13
3.2.3 主减速器基本参数的选择 15
3.2.4 主减速器圆弧锥齿轮的几何尺寸计算 17
3.2.5 主减速器圆弧锥齿轮的强度计算 18
3.3 主减速器轴承的载荷计算 22
3.3.1 锥齿轮齿面上的作用力 22
3.3.2 锥齿轮轴承载荷的计算 25
3.3.3 锥齿轮轴承型号的确定 27
3.4 本章小结 28
4 差速器设计 29
4.1 对称式圆锥行星齿轮差速器的差速原理 29
4.2 对称式圆锥行星齿轮差速器的结构 30
4.3 对称式圆锥行星齿轮差速器的设计 30
4.3.1 差速器齿轮的基本参数的选择 31
4.3.2 差速器齿轮的几何计算 33
4.3.3 差速器齿轮的强度计算 34
4.4 本章小结 36
5 驱动半轴的设计 37
5.1 全浮式半轴计算载荷的确定 38
5.2 全浮式半轴的杆部直径的初选 39
5.3 全浮式半轴的强度计算 39
5.4 半轴花键的选择及强度计算 40
5.4.1 半轴花键的选择 40
5.4.2 半轴花键的强度计算 42
5.5 半轴的结构设计及材料与热处理 43
5.6 本章小结 43
6 驱动桥壳的设计 44
6.1 驱动桥设计概述 44
6.2 桥壳的受力分析及强度计算 44
6.2.1 汽车以最大牵引力行驶时的桥壳强度计算 44
6.2.2 汽车侧向力最大时的桥壳强度计算 45
6.2.3 汽车在不平路面冲击载荷作用下桥壳的强度计算 46
6.3 本章小结 46
结论 47
参考文献 48
致谢 49
部分图纸截图
展开
  • 在线咨询
  • QQ:20425042
  • QQ:99872184
  • 技术支持
  • 售后服务