设计简介
摘 要
随着科学技术的发展和高新技术产业的需要,精密平面磨床已然在当代制造产业中占据了非常重要的地位。本文在收集了大量资料和吸取了前辈们的经验的情况下,设计了一台以广州机械制造厂的MGB6120为原型、以微进给机构和微位移系统来提升加工精度的精密平面磨床工作。在此基础上,完成了该磨床的总体设计计算,并进行了数据对比优化选择,取得以下研究成果:
(1) 设计一台精密数控平面磨床,用砂轮周边磨削平面和台阶平面,用于机械制造业及工具模具制造业,且能加工各种难加工材料。
(2) 确定了该精密平面磨床工作台的各个部件及其功能分配,完成了该平面磨床的传动选择以及总体布局设计。
(3) 利用滚珠丝杆为主要器件,结合梯形螺纹丝杆压杆来检测其稳定性;通过压电、电致伸缩器件在微位移系统中的压电耦合效应和砂轮修整器特性提高了该工作台的加工精度。
(4) 将840D数控技术作用于平面磨床工作台并选择西门子IFK6交流伺服电机作为进给机构和微位移系统的电力源,完成了精密平面磨床微进给及微位移工作台的设计。
关键词:精密;微位移;微进给;砂轮器;数控
Abstract
With the development of science and technology and the need of high-technique industry, precision surface grinder has played a very important role in modern manufacturing industry. Under the circumstance of collecting a great number of materials and absorbing predecessors' experience, this article designs a precision surface grindering machine which is the prototype of MGB6120 in Guangzhou machine tool. In addition, it improves precision by a micro feed mechanism and a micro displacement system. In that case, it finish the calculation of the overall design of the grinding machine. What's more, it makes the optimization of comparative data and obtains the following results:
(1) It designs a precision NC grinding machine and grinds surface with grinding wheel. It is used in mechanical manufacturing industry and model manufacturing industry. It also processes various materials which are very difficult.
(2) It confirms each component and function allocation of precision surface grinder worktable. It also finishes the transmission selection and overall layout.
(3) It regards ball screw rod as main device and is combined with the trapezoidal thread screw rod to test its stability. Piezoelectric coupling effect and grinding wheel dressing device features, which improve the machining accuracy of the workbench through the piezoelectric and electrostrictive devices in the micro displacement system.
(4) It uses 802D in NC plane grinder worktable and chooses Siemens IFK6 AC servo motor as the power source for the feeding mechanism and micro displacement system. It also completes the design of precision surface grinder micro-feed and micro displacement worktable.
Key words: precision, micrometric displacement, micro-feeding, Grinding wheel. CNC (computerized numerical control)
摘 要 III
Abstract IV
目 录 V
1 绪论 1
1.1 本课题的研究背景和意义 1
1.2 国内外精密平面磨床的发展概况 1
1.2.1 国外精密加工数控车床技术发展概况 1
1.2.2 国内精密加工数控车床技术发展概况 3
1.3本课题的设计任务说明 5
1.3.1 毕业设计任务与论文组成 5
1.3.2 本课题的研究方法 5
2 精密平面磨床的总体设计 6
2.1 引言 6
2.2 磨床技术规格 6
2.3 磨床总体布局设计 7
2.4 磨床的传动设计 7
2.5 磨床主要组成部件及其功能 8
2.6 进给机构的分类及使用方法 8
2.7 本章小结 9
3 砂轮的特性和修整 10
3.1 砂轮的特性 10
3.2 砂轮修整器 11
3.2.1 砂轮修整器的设计 11
3.2.2 修整器摆角的设计 14
3.3 砂轮修整的展望 15
3.4 本章小结 15
4 微位移系统 17
4.1 引言 17
4.2 微位移技术的分类 17
4.3 微位移系统的广泛实用性 19
4.3.1 微位移器件在磨床中所需要具备的条件 20
4.3.2 微位移行程的提高 20
4.4 压电、电致伸缩器件在微位移系统结构中的优点 20
4.4.1 压电与电致伸缩效应——机电偶合效应 20
4.5 微位移系统的结构设计 21
4.5.1 微位移工作台的组成 21
4.5.2 微位移工作台工作原理 21
4.5.3 板弹簧的设计与用途 22
4.5.4 预紧力与系统分辨率 22
4.6本章小结 23
5 微进给机构系统的设计 24
5.1 微进给机构的结构和特点 24
5.2 确定微进给机构设计方案 25
5.2.1 对微量自动进给机构的基本要求: 26
5.3 滚珠丝杆副的优点 26
5.3.1 滚珠丝杆的设计计算 26
5.3.2 梯形螺纹丝杆压杆稳定性校核 28
5.4 垂直微进给电机的功率计算 28
5.5 本章小结 29
6 数控硬件电路设计 30
6.1 引言 30
6.2 840D数控系统说明 30
6.3 840D数控系统组成 30
6.4 840D数控系统的连接 30
6.5 本章小结 32
结论和展望 33
致 谢 34
参考文献 35