设计简介
摘要
随着世界各国水平增高和科学技术的发展与提高,球形容器的制造水平也在增加。近年来,我国在石油化工,城市燃气的发展中,大型球罐得到了广泛的应用。
球形压力容器(以下简称球罐)具有占地少、受力情况好、承压能力高,可分片运到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点,在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。近年来我国球罐的大型化和高参数化工程技术水平有了长足的进步,通过对引进球罐的消化、吸收和创新,很多高参数球罐已经实现了国产化,为我国的经济发展做出了积极的贡献。为满足我国石油液化气存储需求,同时也满足石油、化工、轻纺、冶金等行业对球罐大型化的需要,迫切需要发展有自主知识产权的特大型球罐核心技术。球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。针对8000m大型石油液化气球罐设计、制造中的几个关键技术:球罐选材、结构设计和应力分析等方面进行了研究,完成了如下工作:(1)阅读大量国内外文献,在系统了解球罐结构设计及制造方法的基础上,完成文献综述的撰写。(2)对球罐选材进行分析比较,最终确定采用15MnNbR;对球罐进行工艺结构设计和尺寸计算;根据GB12337-98《钢制球形储罐》对球罐进行结构与强度设计计算。进行球罐图纸绘制,完成球罐装配图及各主要零部件图。(4)使用压力容器分析设计系统(VAS2.0)对球罐进行强度分析,对球壳和支座连接处进行应力分析和强度评定。
本罐是在常温常压下设计,压力测试是水压测试,为了承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连。球壳分块较少,板材利用率高,制造工作量小,焊缝短,焊缝个数少,检验量少,施工速度快,拉杆结构采取可调节的拉杆。使球罐可以保持平衡调节简单。
关键词:球形储罐;容器用钢;结构;应力分析
随着世界各国水平增高和科学技术的发展与提高,球形容器的制造水平也在增加。近年来,我国在石油化工,城市燃气的发展中,大型球罐得到了广泛的应用。
球形压力容器(以下简称球罐)具有占地少、受力情况好、承压能力高,可分片运到现场安装成形、容积的大小基本不受运输限制等其它压力容器无可比拟的优点,在石油、化工、城市燃气、冶金等领域广泛用于存储气体和液化气体。近年来我国球罐的大型化和高参数化工程技术水平有了长足的进步,通过对引进球罐的消化、吸收和创新,很多高参数球罐已经实现了国产化,为我国的经济发展做出了积极的贡献。为满足我国石油液化气存储需求,同时也满足石油、化工、轻纺、冶金等行业对球罐大型化的需要,迫切需要发展有自主知识产权的特大型球罐核心技术。球罐的大型化是一个复杂的系统工程,它涉及到多个学科和技术领域。针对8000m大型石油液化气球罐设计、制造中的几个关键技术:球罐选材、结构设计和应力分析等方面进行了研究,完成了如下工作:(1)阅读大量国内外文献,在系统了解球罐结构设计及制造方法的基础上,完成文献综述的撰写。(2)对球罐选材进行分析比较,最终确定采用15MnNbR;对球罐进行工艺结构设计和尺寸计算;根据GB12337-98《钢制球形储罐》对球罐进行结构与强度设计计算。进行球罐图纸绘制,完成球罐装配图及各主要零部件图。(4)使用压力容器分析设计系统(VAS2.0)对球罐进行强度分析,对球壳和支座连接处进行应力分析和强度评定。
本罐是在常温常压下设计,压力测试是水压测试,为了承受风载荷和地震载荷,保证球罐的稳定性,在支柱之间设置拉杆相连。球壳分块较少,板材利用率高,制造工作量小,焊缝短,焊缝个数少,检验量少,施工速度快,拉杆结构采取可调节的拉杆。使球罐可以保持平衡调节简单。
关键词:球形储罐;容器用钢;结构;应力分析
Abstract
With the improvement of comprehensive national strength and the word of-science-andtechnologylevel,themanufacturinglevelofsphericaltankishigh-speeddevelopment.Inrecentyears,China'spetrochemicalindustry, synthetic amm- onia, the building of citygas,large-scalespherical tank is widely use.
Because of its unexampled advantages such as less floor area covering, high-pressure capability and transport facilitates,Spherical pressure tanks (hereinafter referred to as the―storage tankⅡ)used for storage of gas and liquefied gas more widely than other storage tanks in the oil,chemical,city gas,metallurgy and other fields. In recent years,China engineering and technical level of spherical tank has made great progress through the introduction,absorption and innovation of foreign spherical tank technology.
To meet the deman do four country gastor-age,and meet the demand flarge-scaletank in the petroleum,chemical,textile,metallurgical and other industries,it is urgent to develop the core technique of large-scale spherical tank with our own intellectual property rights.Construction of increasingly larger spherical tank is a complex and systematicproject,which involves a number of disciplines and technical fields. in view of research of key design and manufacture technology of 8000 m large-scale liquefied petrolem gas tank,from the perspectives such as evaluation and selection of main material ,
With the improvement of comprehensive national strength and the word of-science-andtechnologylevel,themanufacturinglevelofsphericaltankishigh-speeddevelopment.Inrecentyears,China'spetrochemicalindustry, synthetic amm- onia, the building of citygas,large-scalespherical tank is widely use.
Because of its unexampled advantages such as less floor area covering, high-pressure capability and transport facilitates,Spherical pressure tanks (hereinafter referred to as the―storage tankⅡ)used for storage of gas and liquefied gas more widely than other storage tanks in the oil,chemical,city gas,metallurgy and other fields. In recent years,China engineering and technical level of spherical tank has made great progress through the introduction,absorption and innovation of foreign spherical tank technology.
To meet the deman do four country gastor-age,and meet the demand flarge-scaletank in the petroleum,chemical,textile,metallurgical and other industries,it is urgent to develop the core technique of large-scale spherical tank with our own intellectual property rights.Construction of increasingly larger spherical tank is a complex and systematicproject,which involves a number of disciplines and technical fields. in view of research of key design and manufacture technology of 8000 m large-scale liquefied petrolem gas tank,from the perspectives such as evaluation and selection of main material ,
structure design theory and stress analysis,we have solved several key technology of spherical tank construction.This article has completed the primary research work coverage,which was shown as follows: (1) Based on well understanding of structure design and manufacturing methods of spherical tank , I write literature summary after reading a large number of domestic and foreign literature.(2) Through analysis and comparison of the materials,I finally select 15MnNbR;After the structural design of process and dimension calculation,I complete the calculation of structure and strength according to GB12337-98.(3) The drawings of the tank include an assembly drawing and several parts drawings.(4) For the junction between spherical shell and stanchion, stress analysis and strength assessment is completed .
Key Words:Spherical tank;Steel for pressure vessels;structure;stress analysis
目 录
Key Words:Spherical tank;Steel for pressure vessels;structure;stress analysis
目 录
第一章球罐设计 1
1.1 球罐设计的执行标准及法规 1
1.2 球壳结构 2
1.3 制作结构 2
1.4 拉杆结构 4
1.5 支柱与球壳连接下部结构 5
1.6 接管补强结构 6
1.7 球罐的设计方法 8
1.8球罐制造 8
1.9 球罐安全与安装技术 9
1.10球罐用钢的要求 10
第二章球罐的发展趋势与面临问题 11
2.1 球罐发展趋势 11
2.2 球罐大型化面临的问题 11
2.3几种典型球罐用钢的优劣对比 12
2.4国内外球罐的常用钢种 13
第三章8000m石油液化气球罐设计说明 14
3.1 设计数据 14
3.2 基础资料 14
3.2.1 安装与运行地区气象环境条件 14
3.2.2 工作介质 15
3.2.3 运行要求 15
3.2.4 场地条件 15
3.4 球形储罐主要设计参数的设定 16
3.4.1 设计压力和设计温度 16
3.4.2 人孔、接管位置及尺寸的确定 16
3.4.3 腐蚀余量的确定 17
3.5 设计原则 17
3.5.1 设计规范的确定 17
3.5.2 压力试验方法 17
3.6 球壳设计 18
3.6.1 材料选用 18
3.6.2 球罐支柱数和分带角的确定 18
3.6.3 混合式结构的排板计算 18
3.6.4 球壳 19
3.6.5 开孔补强 20
3.6.6 安全泄放设计 21
3.6.7 法兰密封 21
3.7 球罐支柱与拉杆 21
3.7.1 球罐的连接结构确定 21
3.7.2 支柱结构 213.2.1 安装与运行地区气象环境条件 14
3.2.2 工作介质 15
3.2.3 运行要求 15
3.2.4 场地条件 15
3.4 球形储罐主要设计参数的设定 16
3.4.1 设计压力和设计温度 16
3.4.2 人孔、接管位置及尺寸的确定 16
3.4.3 腐蚀余量的确定 17
3.5 设计原则 17
3.5.1 设计规范的确定 17
3.5.2 压力试验方法 17
3.6 球壳设计 18
3.6.1 材料选用 18
3.6.2 球罐支柱数和分带角的确定 18
3.6.3 混合式结构的排板计算 18
3.6.4 球壳 19
3.6.5 开孔补强 20
3.6.6 安全泄放设计 21
3.6.7 法兰密封 21
3.7 球罐支柱与拉杆 21
3.7.1 球罐的连接结构确定 21
3.8 制造要求 22
3.8.1 球壳板 22
3.8.2 坡口 22
第四章球罐的强度计算 24
4.1 设计条件 24
4.2 球壳计算 25
4.2.1 计算压力 25
4.3 球壳各带的厚度计算 26
4.4 球罐质量计算 26
4.5 地震载荷计算 27
4.5.1 自振周期 27
4.5.2 地震力 27
4.6 弯矩计算 27
4.7 支座底板 28
4.7.1 支座底板直径 28
第五章致谢 29
参考文献 30